CACAO seminar – March 2009

Hardware Operators for Pairing-Based Cryptography

— Part II: Because speed also matters —

Jérémie Detrey

CACAO project-team, LORIA INRIA Nancy — Grand Est Jeremie.Detrey@loria.fr

Joint work with:

Jean-Luc Beuchat
Nicolas Brisebarre
Nicolas Estibals
Eiji Okamoto
Francisco Rodríguez-Henríquez

LCIS, University of Tsukuba, Japan Arénaire, LIP, ÉNS Lyon, France CACAO, LORIA, Nancy, France LCIS, University of Tsukuba, Japan CSD, IPN, Mexico City, Mexico

Outline of the talk

- ► Previously in the Jean-Luc Beuchat Tour
- ► A closer look at the algorithm
- ightharpoonup Accelerating the η_T pairing
- Accelerating the final exponentiation
- ► Implementation results
- Concluding thoughts

Outline of the talk

- ► Previously in the Jean-Luc Beuchat Tour
- ► A closer look at the algorithm
- ightharpoonup Accelerating the η_T pairing
- ► Accelerating the final exponentiation
- ► Implementation results
- Concluding thoughts

Bilinear pairings

- ▶ $\mathbb{G}_1 = \langle P \rangle$: additively-written cyclic group of prime order $\#\mathbb{G}_1 = \ell$
- ▶ \mathbb{G}_2 : multiplicatively-written cyclic group of order $\#\mathbb{G}_2 = \#\mathbb{G}_1 = \ell$

Bilinear pairings

- ▶ $\mathbb{G}_1 = \langle P \rangle$: additively-written cyclic group of prime order $\#\mathbb{G}_1 = \ell$
- ▶ \mathbb{G}_2 : multiplicatively-written cyclic group of order $\#\mathbb{G}_2 = \#\mathbb{G}_1 = \ell$
- ightharpoon A bilinear pairing on $(\mathbb{G}_1, \mathbb{G}_2)$ is a map

$$\hat{e}: \mathbb{G}_1 \times \mathbb{G}_1 \to \mathbb{G}_2$$

that satisfies the following conditions:

- non-degeneracy: $\hat{e}(P, P) \neq 1_{\mathbb{G}_2}$ (equivalently $\hat{e}(P, P)$ generates \mathbb{G}_2)
- bilinearity:

$$\hat{e}(Q_1 + Q_2, R) = \hat{e}(Q_1, R) \cdot \hat{e}(Q_2, R)$$
 $\hat{e}(Q, R_1 + R_2) = \hat{e}(Q, R_1) \cdot \hat{e}(Q, R_2)$

computability: ê can be efficiently computed

Bilinear pairings

- ▶ $\mathbb{G}_1 = \langle P \rangle$: additively-written cyclic group of prime order $\#\mathbb{G}_1 = \ell$
- ▶ \mathbb{G}_2 : multiplicatively-written cyclic group of order $\#\mathbb{G}_2 = \#\mathbb{G}_1 = \ell$
- ightharpoon A bilinear pairing on $(\mathbb{G}_1, \mathbb{G}_2)$ is a map

$$\hat{e}: \mathbb{G}_1 \times \mathbb{G}_1 \to \mathbb{G}_2$$

that satisfies the following conditions:

- non-degeneracy: $\hat{e}(P, P) \neq 1_{\mathbb{G}_2}$ (equivalently $\hat{e}(P, P)$ generates \mathbb{G}_2)
- bilinearity:

$$\hat{e}(Q_1 + Q_2, R) = \hat{e}(Q_1, R) \cdot \hat{e}(Q_2, R)$$
 $\hat{e}(Q, R_1 + R_2) = \hat{e}(Q, R_1) \cdot \hat{e}(Q, R_2)$

- computability: ê can be efficiently computed
- ▶ Immediate property: for any two integers k_1 and k_2

$$\hat{e}(k_1P, k_2P) = \hat{e}(k_2P, k_1P) = \hat{e}(P, P)^{k_1k_2}$$

Pairings in cryptography

- ► At first, used to attack supersingular elliptic curves
 - Menezes-Okamoto-Vanstone attack, 1993
 - Frey-Rück attack, 1994

Pairings in cryptography

- ► At first, used to attack supersingular elliptic curves
 - Menezes-Okamoto-Vanstone attack, 1993
 - Frey-Rück attack, 1994
- ▶ One-round three-party key agreement (Joux, 2000)
- Identity-based encryption
 - Boneh-Franklin, 2001
 - Sakai-Kasahara, 2001
- ► Short digital signatures
 - Boneh-Lynn-Shacham, 2001
 - Zang-Safavi-Naini-Susilo, 2004
- **...**

- ▶ We first define
 - \mathbb{F}_{p^m} , a finite field, with p=2 or 3
 - E, a supersingular elliptic curve defined over \mathbb{F}_{p^m}
 - ℓ , a large prime factor of $\#E(\mathbb{F}_{p^m})$

- ▶ We first define
 - \mathbb{F}_{p^m} , a finite field, with p=2 or 3
 - E, a supersingular elliptic curve defined over \mathbb{F}_{p^m}
 - ℓ , a large prime factor of $\#E(\mathbb{F}_{p^m})$
- ▶ $\mathbb{G}_1 = E(\mathbb{F}_{p^m})[\ell]$, the \mathbb{F}_{p^m} -rational ℓ -torsion of E:

$$\mathbb{G}_1 = \{ P \in E(\mathbb{F}_{p^m}) \mid \ell P = \mathcal{O} \}$$

- We first define
 - \mathbb{F}_{p^m} , a finite field, with p=2 or 3
 - E, a supersingular elliptic curve defined over \mathbb{F}_{p^m}
 - ℓ , a large prime factor of $\#E(\mathbb{F}_{p^m})$
- ▶ $\mathbb{G}_1 = E(\mathbb{F}_{p^m})[\ell]$, the \mathbb{F}_{p^m} -rational ℓ -torsion of E:

$$\mathbb{G}_1 = \{ P \in E(\mathbb{F}_{p^m}) \mid \ell P = \mathcal{O} \}$$

▶ $\mathbb{G}_2 = \mu_\ell$, the group of ℓ -th roots of unity in $\mathbb{F}_{p^{km}}^{\times}$:

$$\mathbb{G}_2=\{U\in\mathbb{F}_{p^{km}}^{ imes}\mid U^\ell=1\}$$

- ▶ We first define
 - \mathbb{F}_{p^m} , a finite field, with p=2 or 3
 - E, a supersingular elliptic curve defined over \mathbb{F}_{p^m}
 - ℓ , a large prime factor of $\#E(\mathbb{F}_{p^m})$
- ▶ $\mathbb{G}_1 = E(\mathbb{F}_{p^m})[\ell]$, the \mathbb{F}_{p^m} -rational ℓ -torsion of E:

$$\mathbb{G}_1 = \{ P \in E(\mathbb{F}_{p^m}) \mid \ell P = \mathcal{O} \}$$

▶ $\mathbb{G}_2 = \mu_\ell$, the group of ℓ -th roots of unity in $\mathbb{F}_{p^{km}}^{\times}$:

$$\mathbb{G}_2=\{U\in\mathbb{F}_{p^{km}}^{ imes}\mid U^\ell=1\}$$

- \blacktriangleright k is the embedding degree, the smallest integer such that $\mu_\ell \subseteq \mathbb{F}_{p^{km}}^{\times}$
 - k = 4 in characteristic p = 2
 - k = 6 in characteristic p = 3

$$\hat{e}$$
 : $E(\mathbb{F}_{p^m})[\ell] \times E(\mathbb{F}_{p^m})[\ell]$ (P , Q)

6 / 38

Security considerations

$$\hat{\mathsf{e}}: E(\mathbb{F}_{p^m})[\ell] imes E(\mathbb{F}_{p^m})[\ell] o \mu_\ell \subseteq \mathbb{F}_{p^{km}}^{ imes}$$

ightharpoonup The discrete logarithm problem should be hard in both G_1 and G_2

Security considerations

$$\hat{\mathsf{e}}: E(\mathbb{F}_{p^m})[\ell] imes E(\mathbb{F}_{p^m})[\ell] o \mu_\ell \subseteq \mathbb{F}_{p^{km}}^{ imes}$$

 \blacktriangleright The discrete logarithm problem should be hard in both \mathbb{G}_1 and \mathbb{G}_2

Base field (\mathbb{F}_{p^m})	\mathbb{F}_{2^m}	\mathbb{F}_{3^m}
Lower security $(\sim 2^{64})$	m=239	m = 97
Medium security ($\sim 2^{80}$)	m = 373	m=163
Higher security $(\sim 2^{128})$	m = 1103	m = 503

- ightharpoonup F_{2m}: simpler finite field arithmetic
- ightharpoonup F_{3m}: smaller field extension

$$\hat{\mathbf{e}}: E(\mathbb{F}_{p^m})[\ell] \times E(\mathbb{F}_{p^m})[\ell] \to \mu_\ell \subseteq \mathbb{F}_{p^{km}}^{\times}$$

$$\hat{\mathsf{e}}: E(\mathbb{F}_{p^m})[\ell] imes E(\mathbb{F}_{p^m})[\ell] o \mu_\ell \subseteq \mathbb{F}_{p^{km}}^{ imes}$$

- ► Arithmetic over \mathbb{F}_{p^m} :
 - polynomial basis: $\mathbb{F}_{p^m} \cong \mathbb{F}_p[x]/(f(x))$
 - f(x), degree-m polynomial irreducible over \mathbb{F}_p

$$\hat{e}: E(\mathbb{F}_{p^m})[\ell] imes E(\mathbb{F}_{p^m})[\ell] o \mu_\ell \subseteq \mathbb{F}_{p^{km}}^{ imes}$$

- ightharpoonup Arithmetic over \mathbb{F}_{p^m} :
 - polynomial basis: $\mathbb{F}_{p^m} \cong \mathbb{F}_p[x]/(f(x))$
 - f(x), degree-m polynomial irreducible over \mathbb{F}_p
- ► Arithmetic over $\mathbb{F}_{p^{km}}^{\times}$:
 - tower-field representation
 - only arithmetic over the underlying field \mathbb{F}_{p^m}

$$\hat{e}: E(\mathbb{F}_{p^m})[\ell] \times E(\mathbb{F}_{p^m})[\ell] o \mu_\ell \subseteq \mathbb{F}_{p^{km}}^{\times}$$

- ▶ Arithmetic over \mathbb{F}_{p^m} :
 - polynomial basis: $\mathbb{F}_{p^m} \cong \mathbb{F}_p[x]/(f(x))$
 - f(x), degree-m polynomial irreducible over \mathbb{F}_p
- ► Arithmetic over $\mathbb{F}_{p^{km}}^{\times}$:
 - tower-field representation
 - only arithmetic over the underlying field \mathbb{F}_{p^m}
- ▶ Operations over \mathbb{F}_{p^m} :
 - O(m) additions / subtractions
 - O(m) multiplications
 - O(m) Frobenius maps $(a \mapsto a^p, i.e.$ squarings or cubings)
 - 1 inversion

$$\hat{\mathbf{e}}: E(\mathbb{F}_{p^m})[\ell] \times E(\mathbb{F}_{p^m})[\ell] \to \mu_\ell \subseteq \mathbb{F}_{p^{km}}^{\times}$$

- ightharpoonup Arithmetic over \mathbb{F}_{p^m} :
 - polynomial basis: $\mathbb{F}_{p^m} \cong \mathbb{F}_p[x]/(f(x))$
 - f(x), degree-m polynomial irreducible over \mathbb{F}_p
- ► Arithmetic over $\mathbb{F}_{p^{km}}^{\times}$:
 - tower-field representation
 - only arithmetic over the underlying field \mathbb{F}_{p^m}
- ▶ Operations over \mathbb{F}_{p^m} :
 - O(m) additions / subtractions
 - O(m) multiplications
 - O(m) Frobenius maps $(a \mapsto a^p, i.e.$ squarings or cubings)
 - 1 inversion
- ► A first idea: an all-in-one unified operator:
 - shared resources
 - scalable architecture

The best area-time product of the literature...

... But still quite slow

... But still quite slow

(or not the fastest, at least!)

Motivations

- ► High speed is more important than low resources for some cryptographic applications
- Explore the other end of the area vs. time tradeoff:
 - faster but larger than the unified operator
 - what about the area-time product?

Motivations

- ► High speed is more important than low resources for some cryptographic applications
- Explore the other end of the area vs. time tradeoff:
 - faster but larger than the unified operator
 - what about the area-time product?
- ► Accelerate the computation by extracting as much parallelism as possible...
- ▶ ... Without dramatically increasing the resource requirements

Outline of the talk

- ► Previously in the Jean-Luc Beuchat Tour
- ► A closer look at the algorithm
- ightharpoonup Accelerating the η_T pairing
- ► Accelerating the final exponentiation
- ► Implementation results
- Concluding thoughts

The Tate pairing over $E(\mathbb{F}_{p^m})$ is computed in two main steps $\hat{e}(P,Q)$

▶ The Tate pairing over $E(\mathbb{F}_{p^m})$ is computed in two main steps

$$\hat{e}(P, Q) = \eta_T(P, Q)$$

- ▶ Computation of the η_T pairing
 - via Miller's algorithm: loop of (m+1)/2 iterations
 - result only defined modulo N-th powers in $\mathbb{F}_{p^{km}}^{\times}$, with $N=\#E(\mathbb{F}_{p^m})$

▶ The Tate pairing over $E(\mathbb{F}_{p^m})$ is computed in two main steps

$$\hat{e}(P,Q) = \eta_T(P,Q)^M$$

- \blacktriangleright Computation of the η_T pairing
 - via Miller's algorithm: loop of (m+1)/2 iterations
 - result only defined modulo N-th powers in $\mathbb{F}_{p^{km}}^{\times}$, with $N=\#E(\mathbb{F}_{p^m})$
- ▶ Final exponentiation by $M = (p^{km} 1)/N$
 - required to obtain a unique value for each congruence class
 - example in characteristic 3 (k=6 and $N=3^m+1\pm 3^{(m+1)/2}$):

$$M = \frac{3^{6m} - 1}{3^m + 1 + 3^{(m+1)/2}} = (3^{3m} - 1)(3^m + 1)(3^m + 1 \mp 3^{(m+1)/2})$$

exploit the special form of the exponent: ad-hoc algorithm

▶ The Tate pairing over $E(\mathbb{F}_{p^m})$ is computed in two main steps

$$\hat{e}(P,Q) = \eta_T(P,Q)^M$$

- ▶ Computation of the η_T pairing
 - via Miller's algorithm: loop of (m+1)/2 iterations
 - result only defined modulo N-th powers in $\mathbb{F}_{p^{km}}^{\times}$, with $N=\#E(\mathbb{F}_{p^m})$
- ▶ Final exponentiation by $M = (p^{km} 1)/N$
 - required to obtain a unique value for each congruence class
 - example in characteristic 3 (k=6 and $N=3^m+1\pm 3^{(m+1)/2}$):

$$M = \frac{3^{6m} - 1}{3^m + 1 \pm 3^{(m+1)/2}} = (3^{3m} - 1)(3^m + 1)(3^m + 1 \mp 3^{(m+1)/2})$$

- exploit the special form of the exponent: ad-hoc algorithm
- ► Two distinct computational requirements

▶ The Tate pairing over $E(\mathbb{F}_{p^m})$ is computed in two main steps

$$\hat{e}(P,Q) = \eta_T(P,Q)^M$$

- ▶ Computation of the η_T pairing
 - via Miller's algorithm: loop of (m+1)/2 iterations
 - result only defined modulo N-th powers in $\mathbb{F}_{p^{km}}^{\times}$, with $N=\#E(\mathbb{F}_{p^m})$
- ▶ Final exponentiation by $M = (p^{km} 1)/N$
 - required to obtain a unique value for each congruence class
 - example in characteristic 3 (k=6 and $N=3^m+1\pm3^{(m+1)/2}$):

$$M = \frac{3^{6m} - 1}{3^m + 1 + 3^{(m+1)/2}} = (3^{3m} - 1)(3^m + 1)(3^m + 1 \mp 3^{(m+1)/2})$$

- exploit the special form of the exponent: ad-hoc algorithm
- ► Two distinct computational requirements ⇒ use two distinct coprocessors

Two coprocessors for the Tate pairing

► The two operations are purely sequential

Two coprocessors for the Tate pairing

► The two operations are purely sequential

Two coprocessors for the Tate pairing

► The two operations are purely sequential

► The two operations are purely sequential

► Only one active coprocessor at every moment

- ► Only one active coprocessor at every moment
- ▶ Pipeline the data between the two coprocessors

- ► Only one active coprocessor at every moment
- ▶ Pipeline the data between the two coprocessors

- ► Only one active coprocessor at every moment
- ▶ Pipeline the data between the two coprocessors

- ► Only one active coprocessor at every moment
- ▶ Pipeline the data between the two coprocessors

- ► Only one active coprocessor at every moment
- ▶ Pipeline the data between the two coprocessors

- ► Only one active coprocessor at every moment
- ▶ Pipeline the data between the two coprocessors
 - both of them are kept busy
 - higher throughput

- ► Only one active coprocessor at every moment
- ▶ Pipeline the data between the two coprocessors
 - both of them are kept busy
 - higher throughput
- ▶ Balance the computation time between the two coprocessors

Outline of the talk

- ► Previously in the Jean-Luc Beuchat Tour
- ► A closer look at the algorithm
- ightharpoonup Accelerating the η_T pairing
- ► Accelerating the final exponentiation
- ► Implementation results
- ► Concluding thoughts

Outline of the talk

- ► Previously in the Jean-Luc Beuchat Tour
- ► A closer look at the algorithm
- ▶ Accelerating the η_T pairing (in characteristic 3)
- ► Accelerating the final exponentiation
- ► Implementation results
- ► Concluding thoughts

$$\eta_T: E(\mathbb{F}_{p^m})[\ell] \times E(\mathbb{F}_{p^m})[\ell] \to \mathbb{F}_{p^{km}}^{\times}$$

$$\eta_T: E(\mathbb{F}_{3^m})[\ell] \times E(\mathbb{F}_{3^m})[\ell] \to \mathbb{F}_{3^{6m}}^{\times}$$

$$\eta_{T}: E(\mathbb{F}_{3^{m}})[\ell] \times E(\mathbb{F}_{3^{m}})[\ell] \to \mathbb{F}_{3^{6m}}^{\times}$$

$$for \ i \leftarrow 0 \ to \ (m-1)/2 \ do$$

$$x_{Q} \leftarrow x_{Q}^{9} \pm 1 \ ; \ y_{Q} \leftarrow -y_{Q}^{9}$$

$$t \leftarrow x_{P} + x_{Q} \ ; \ u \leftarrow y_{P}y_{Q}$$

$$S \leftarrow -t^{2} + u\sigma - t\rho - \rho^{2}$$

$$R \leftarrow R \cdot S$$

$$R \leftarrow R^{3}$$

Four tasks per iteration:

$$\eta_T: E(\mathbb{F}_{3^m})[\ell] \times E(\mathbb{F}_{3^m})[\ell] \to \mathbb{F}_{3^{6m}}^{\times}$$

for
$$i \leftarrow 0$$
 to $(m-1)/2$ do

1
$$x_Q \leftarrow x_Q^9 \pm 1$$
; $y_Q \leftarrow -y_Q^9$
 $t \leftarrow x_P + x_Q$; $u \leftarrow y_P y_Q$
 $S \leftarrow -t^2 + u\sigma - t\rho - \rho^2$
 $R \leftarrow R \cdot S$
 $R \leftarrow R^3$

- ► Four tasks per iteration:
 - ① update the coordinates

$$\eta_T: E(\mathbb{F}_{3^m})[\ell] \times E(\mathbb{F}_{3^m})[\ell] \to \mathbb{F}_{3^{6m}}^{\times}$$

for
$$i \leftarrow 0$$
 to $(m-1)/2$ do

①
$$x_Q \leftarrow x_Q^9 \pm 1$$
; $y_Q \leftarrow -y_Q^9$

2
$$t \leftarrow x_P + x_Q$$
; $u \leftarrow y_P y_Q$
 $S \leftarrow -t^2 + u\sigma - t\rho - \rho^2$

$$R \leftarrow R \cdot S$$

$$R \leftarrow R^3$$

- ► Four tasks per iteration:
 - ① update the coordinates
 - 2 compute the line equation

$$\eta_T: E(\mathbb{F}_{3^m})[\ell] \times E(\mathbb{F}_{3^m})[\ell] \to \mathbb{F}_{3^{6m}}^{\times}$$

for
$$i \leftarrow 0$$
 to $(m-1)/2$ do

①
$$x_Q \leftarrow x_Q^9 \pm 1$$
; $y_Q \leftarrow -y_Q^9$

②
$$t \leftarrow x_P + x_Q \; ; \; u \leftarrow y_P y_Q S \leftarrow -t^2 + u\sigma - t\rho - \rho^2$$

- ► Four tasks per iteration:
 - ① update the coordinates
 - 2 compute the line equation
 - ③ accumulate the new factor

$$\eta_T: E(\mathbb{F}_{3^m})[\ell] \times E(\mathbb{F}_{3^m})[\ell] \to \mathbb{F}_{3^{6m}}^{\times}$$

for
$$i \leftarrow 0$$
 to $(m-1)/2$ do

①
$$x_Q \leftarrow x_Q^9 \pm 1$$
; $y_Q \leftarrow -y_Q^9$

2
$$t \leftarrow x_P + x_Q$$
; $u \leftarrow y_P y_Q$
 $S \leftarrow -t^2 + u\sigma - t\rho - \rho^2$

③
$$R \leftarrow R \cdot S$$

$$4 R \leftarrow R^3$$

- ► Four tasks per iteration:
 - ① update the coordinates
 - 2 compute the line equation
 - ③ accumulate the new factor
 - ④ cube the partial product

$$\eta_T: E(\mathbb{F}_{3^m})[\ell] \times E(\mathbb{F}_{3^m})[\ell] \to \mathbb{F}_{3^{6m}}^{\times}$$

for $i \leftarrow 0$ to (m-1)/2 do

①
$$\left[x_Q \leftarrow x_Q^9 \pm 1 \; ; \; y_Q \leftarrow -y_Q^9 \right]$$
 4 Frobenius, $2 + \left(\mathbb{F}_{3^m}\right)$

2
$$t \leftarrow x_P + x_Q$$
; $u \leftarrow y_P y_Q$
 $S \leftarrow -t^2 + u\sigma - t\rho - \rho^2$

③
$$R \leftarrow R \cdot S$$

$$4 R \leftarrow R^3$$

- ► Four tasks per iteration:
 - ① update the coordinates
 - 2 compute the line equation
 - 3 accumulate the new factor
 - ④ cube the partial product

$$\eta_T: E(\mathbb{F}_{3^m})[\ell] \times E(\mathbb{F}_{3^m})[\ell] \to \mathbb{F}_{3^{6m}}^{\times}$$

for $i \leftarrow 0$ to (m-1)/2 do

①
$$x_Q \leftarrow x_Q^9 \pm 1$$
 ; $y_Q \leftarrow -y_Q^9$ 4 Frobenius, $2 + (\mathbb{F}_{3^m})$

4 Frobenius,
$$2 + (\mathbb{F}_{3^m}]$$

$$2 \times$$
, $1 + (\mathbb{F}_{3^m})$

③
$$R \leftarrow R \cdot S$$

$$4 R \leftarrow R^3$$

- ► Four tasks per iteration:
 - ① update the coordinates
 - 2 compute the line equation
 - 3 accumulate the new factor
 - ④ cube the partial product

$$\eta_T: E(\mathbb{F}_{3^m})[\ell] \times E(\mathbb{F}_{3^m})[\ell] \to \mathbb{F}_{3^{6m}}^{\times}$$

for
$$i \leftarrow 0$$
 to $(m-1)/2$ do

①
$$x_Q \leftarrow x_Q^9 \pm 1$$
 ; $y_Q \leftarrow -y_Q^9$ 4 Frobenius, $2 + (\mathbb{F}_{3^m})$

③ R ← R · S

- ► Four tasks per iteration:
 - ① update the coordinates
 - 2 compute the line equation
 - ③ accumulate the new factor
 - ④ cube the partial product

$$\eta_T: E(\mathbb{F}_{3^m})[\ell] \times E(\mathbb{F}_{3^m})[\ell] \to \mathbb{F}_{3^{6m}}^{\times}$$

for
$$i \leftarrow 0$$
 to $(m-1)/2$ do

①
$$x_Q \leftarrow x_Q^9 \pm 1$$
 ; $y_Q \leftarrow -y_Q^9$ 4 Frobenius, $2 + (\mathbb{F}_{3^m})$

- Four tasks per iteration:
 - ① update the coordinates
 - 2 compute the line equation
 - ③ accumulate the new factor
 - ④ cube the partial product

$$\eta_T: E(\mathbb{F}_{3^m})[\ell] \times E(\mathbb{F}_{3^m})[\ell] \to \mathbb{F}_{3^{6m}}^{\times}$$

for
$$i \leftarrow 0$$
 to $(m-1)/2$ do

①
$$x_Q \leftarrow x_Q^9 \pm 1$$
 ; $y_Q \leftarrow -y_Q^9$ 4 Frobenius, $2 + (\mathbb{F}_{3^m})$

$$\textcircled{4}$$
 $R \leftarrow R^3$ 6 Frobenius, $6 + (\mathbb{F}_{3^m})$

- Four tasks per iteration:
 - ① update the coordinates
 - 2 compute the line equation
 - ③ accumulate the new factor
 - ④ cube the partial product

$$\eta_T: E(\mathbb{F}_{3^m})[\ell] \times E(\mathbb{F}_{3^m})[\ell] \to \mathbb{F}_{3^{6m}}^{\times}$$

for
$$i \leftarrow 0$$
 to $(m-1)/2$ do

①
$$x_Q \leftarrow x_Q^9 \pm 1$$
; $y_Q \leftarrow -y_Q^9$ 4 Frobenius, $2 + (\mathbb{F}_{3^m})$

②
$$t \leftarrow x_P + x_Q$$
; $u \leftarrow y_P y_Q$
 $S \leftarrow -t^2 + u\sigma - t\rho - \rho^2$

③
$$R \leftarrow R \cdot S$$

$$4 R \leftarrow R^3$$

4 Frobenius,
$$2 + (\mathbb{F}_{3^m})$$

$$2 \times$$
, $1 + (\mathbb{F}_{3^m})$

$$12 \times$$
, $59 + (\mathbb{F}_{3^m})$

6 Frobenius, 6 +
$$(\mathbb{F}_{3^m})$$

- Four tasks per iteration:
 - ① update the coordinates
 - 2 compute the line equation
 - 3 accumulate the new factor
 - ④ cube the partial product

$$\eta_T: E(\mathbb{F}_{3^m})[\ell] \times E(\mathbb{F}_{3^m})[\ell] \to \mathbb{F}_{3^{6m}}^{\times}$$

for $i \leftarrow 0$ to (m-1)/2 do

①
$$x_Q \leftarrow x_Q^9 \pm 1$$
 ; $y_Q \leftarrow -y_Q^9$ 4 Frobenius, $2 + (\mathbb{F}_{3^m})$

③
$$R \leftarrow R \cdot S$$
 15 ×, 29 + (\mathbb{F}_{3^m})

$$\textcircled{4}$$
 $R \leftarrow R^3$ 6 Frobenius, $6 + (\mathbb{F}_{3^m})$

- Four tasks per iteration:
 - ① update the coordinates
 - 2 compute the line equation
 - ③ accumulate the new factor
 - ④ cube the partial product

$$\eta_T: E(\mathbb{F}_{3^m})[\ell] \times E(\mathbb{F}_{3^m})[\ell] \to \mathbb{F}_{3^{6m}}^{\times}$$

for
$$i \leftarrow 0$$
 to $(m-1)/2$ do

①
$$x_Q \leftarrow x_Q^9 \pm 1$$
 ; $y_Q \leftarrow -y_Q^9$ 4 Frobenius, $2 + (\mathbb{F}_{3^m})$

③
$$R \leftarrow R \cdot S$$
 15 ×, 29 + (\mathbb{F}_{3^m})

$$\textcircled{4}$$
 $R \leftarrow R^3$ 6 Frobenius, $6 + (\mathbb{F}_{3^m})$

- ► Four tasks per iteration:
 - ① update the coordinates
 - 2 compute the line equation
 - ③ accumulate the new factor
 - 4 cube the partial product
- ▶ Total cost: $17 \times$, 10 Frobenius and $38 + \text{over } \mathbb{F}_{3^m}$

Accelerating the η_{T} pairing

▶ Total cost: $17 \times$, 10 Frobenius and $38 + \text{over } \mathbb{F}_{3^m}$ per iteration

- ▶ Total cost: $17 \times$, 10 Frobenius and $38 + \text{over } \mathbb{F}_{3^m}$ per iteration
 - Frobenius and +: cheap and fast operations
 - critical operation: ×

- ▶ Total cost: $17 \times$, 10 Frobenius and $38 + \text{over } \mathbb{F}_{3^m}$ per iteration
 - Frobenius and +: cheap and fast operations
 - critical operation: ×
- ► Need for a fast parallel multiplier

- ▶ Total cost: $17 \times$, 10 Frobenius and $38 + \text{over } \mathbb{F}_{3^m}$ per iteration
 - Frobenius and +: cheap and fast operations
 - critical operation: ×
- ▶ Need for a fast parallel multiplier: Karatsuba-Ofman

- ▶ Total cost: $17 \times$, 10 Frobenius and $38 + \text{over } \mathbb{F}_{3^m}$ per iteration
 - Frobenius and +: cheap and fast operations
 - critical operation: ×
- ▶ Need for a fast parallel multiplier: Karatsuba-Ofman

- ▶ Total cost: $17 \times$, 10 Frobenius and $38 + \text{over } \mathbb{F}_{3^m}$ per iteration
 - Frobenius and +: cheap and fast operations
 - critical operation: ×
- ▶ Need for a fast parallel multiplier: Karatsuba-Ofman

- ▶ Total cost: $17 \times$, 10 Frobenius and $38 + \text{over } \mathbb{F}_{3^m}$ per iteration
 - Frobenius and +: cheap and fast operations
 - critical operation: ×
- ▶ Need for a fast parallel multiplier: Karatsuba-Ofman

- ▶ Total cost: $17 \times$, 10 Frobenius and $38 + \text{over } \mathbb{F}_{3^m}$ per iteration
 - Frobenius and +: cheap and fast operations
 - critical operation: ×
- Need for a fast parallel multiplier: Karatsuba-Ofman

- ▶ Total cost: $17 \times$, 10 Frobenius and $38 + \text{over } \mathbb{F}_{3^m}$ per iteration
 - Frobenius and +: cheap and fast operations
 - critical operation: ×
- Need for a fast parallel multiplier: Karatsuba-Ofman

- ▶ Total cost: $17 \times$, 10 Frobenius and $38 + \text{over } \mathbb{F}_{3^m}$ per iteration
 - Frobenius and +: cheap and fast operations
 - critical operation: ×
- ▶ Need for a fast parallel multiplier: Karatsuba-Ofman

• fully parallel: all sub-products are computed in parallel

- fully parallel: all sub-products are computed in parallel
- pipelined architecture: higher clock frequency, one product per cycle

- fully parallel: all sub-products are computed in parallel
- pipelined architecture: higher clock frequency, one product per cycle
- sub-products recursively implemented as Karatsuba-Ofman multipliers

- fully parallel: all sub-products are computed in parallel
- pipelined architecture: higher clock frequency, one product per cycle
- sub-products recursively implemented as Karatsuba-Ofman multipliers
- support for other variants: odd-even split, 3-way split, ...

- fully parallel: all sub-products are computed in parallel
- pipelined architecture: higher clock frequency, one product per cycle
- sub-products recursively implemented as Karatsuba-Ofman multipliers
- support for other variants: odd-even split, 3-way split, ...
- final reduction modulo the irreducible polynomial f

Accelerating the η_T pairing

- ▶ Total cost: $17 \times$, 10 Frobenius and $38 + \text{over } \mathbb{F}_{3^m}$ per iteration
- \blacktriangleright η_T coprocessor based on a single large multiplier:
 - parallel Karatsuba-Ofman architecture
 - 7-stage pipeline
 - one product per cycle

Accelerating the η_T pairing

- ▶ Total cost: $17 \times$, 10 Frobenius and $38 + \text{over } \mathbb{F}_{3^m}$ per iteration
- \blacktriangleright η_T coprocessor based on a single large multiplier:
 - parallel Karatsuba-Ofman architecture
 - 7-stage pipeline
 - one product per cycle
- ► Challenge: keep the multiplier busy at all times

Accelerating the η_T pairing

- ▶ Total cost: $17 \times$, 10 Frobenius and $38 + \text{over } \mathbb{F}_{3^m}$ per iteration
- \blacktriangleright η_T coprocessor based on a single large multiplier:
 - parallel Karatsuba-Ofman architecture
 - 7-stage pipeline
 - one product per cycle
- ► Challenge: keep the multiplier busy at all times
- Careful scheduling to avoid pipeline bubbles (idle cycles):
 - ensure that multiplication operands are always available
 - avoid memory congestion issues

$$2 \begin{array}{c} t \leftarrow x_P + x_Q ; u \leftarrow y_P y_Q \\ S \leftarrow -t^2 + u\sigma - t\rho - \rho^2 \end{array}$$

$$2 \begin{array}{c} t \leftarrow x_P + x_Q \; ; \; u \leftarrow y_P y_Q \\ S \leftarrow -t^2 + u\sigma - t\rho - \rho^2 \end{array}$$

$$\bigcirc$$
 $R \leftarrow R \cdot S$

Sequential dependencies between the tasks

► Sequential dependencies between the tasks in each iteration

Sequential dependencies between the tasks in each iteration

- Sequential dependencies between the tasks in each iteration
- ▶ Dependencies between consecutive iterations

- Sequential dependencies between the tasks in each iteration
- ▶ Dependencies between consecutive iterations

$$2 \begin{array}{c} t \leftarrow x_P + x_Q ; u \leftarrow y_P y_Q \\ S \leftarrow -t^2 + u\sigma - t\rho - \rho^2 \end{array}$$

ightharpoonup The task dependency 4 o 3 forces idle cycles into the multiplier pipeline

- ightharpoonup The task dependency 4 o 3 forces idle cycles into the multiplier pipeline
- \blacktriangleright The considered η_T pairing algorithm is not suited for parallel implementation

$$\eta_T: E(\mathbb{F}_{3^m})[\ell] \times E(\mathbb{F}_{3^m})[\ell] \to \mathbb{F}_{3^{6_m}}^{\times}$$

for
$$i \leftarrow 0$$
 to $(m-1)/2$ do

1
$$x_Q \leftarrow x_Q^9 \pm 1$$
; $y_Q \leftarrow -y_Q^9$

②
$$t \leftarrow x_P + x_Q$$
; $u \leftarrow y_P y_Q$
 $S \leftarrow -t^2 + u\sigma - t\rho - \rho^2$

- ③ $R \leftarrow R \cdot S$

$$\eta_T: E(\mathbb{F}_{3^m})[\ell] \times E(\mathbb{F}_{3^m})[\ell] \to \mathbb{F}_{3^{6_m}}^{\times}$$

for
$$i \leftarrow 0$$
 to $(m-1)/2$ do

1)
$$x_P \leftarrow x_P$$
 ; $y_P \leftarrow y_P$ $x_Q \leftarrow x_Q^9 \pm 1$; $y_Q \leftarrow -y_Q^9$

②
$$t \leftarrow x_P + x_Q$$
; $u \leftarrow y_P y_Q$
 $S \leftarrow -t^2 + u\sigma - t\rho - \rho^2$

③
$$R \leftarrow R \cdot S$$

$$4 R \leftarrow R^3$$

$$\eta_T: E(\mathbb{F}_{3^m})[\ell] \times E(\mathbb{F}_{3^m})[\ell] \to \mathbb{F}_{3^{6_m}}^{\times}$$

for
$$i \leftarrow 0$$
 to $(m-1)/2$ do

1
$$x_P \leftarrow x_P$$
 ; $y_P \leftarrow y_P$ $x_Q \leftarrow x_Q^{9} \pm 1$; $y_Q \leftarrow -y_Q^{9}$

②
$$t \leftarrow x_P + x_Q$$
; $u \leftarrow y_P y_Q$
 $S \leftarrow -t^2 + u\sigma - t\rho - \rho^2$

③
$$R \leftarrow R \cdot S$$

$$\eta_T: E(\mathbb{F}_{3^m})[\ell] \times E(\mathbb{F}_{3^m})[\ell] \to \mathbb{F}_{3^{6m}}^{\times}$$

for
$$i \leftarrow 0$$
 to $(m-1)/2$ do

1
$$x_P \leftarrow x_P$$
 ; $y_P \leftarrow y_P$ $x_Q \leftarrow x_Q^9 \pm 1$; $y_Q \leftarrow -y_Q^9$

②
$$t \leftarrow x_P + x_Q$$
; $u \leftarrow y_P y_Q$
 $S \leftarrow -t^2 + u\sigma - t\rho - \rho^2$

③
$$R \leftarrow R \cdot S$$

end for

1
$$x_P \leftarrow \sqrt[3]{x_P}$$
 ; $y_P \leftarrow \sqrt[3]{y_P}$ $x_Q \leftarrow x_Q^3$; $y_Q \leftarrow y_Q^3$

②
$$t \leftarrow x_P + x_Q$$
; $u \leftarrow y_P y_Q$
 $S \leftarrow -t^2 \pm u\sigma - t\rho - \rho^2$

③
$$R \leftarrow R \cdot S$$

$$4$$
 $R \leftarrow R$

$$\eta_T: E(\mathbb{F}_{3^m})[\ell] \times E(\mathbb{F}_{3^m})[\ell] \to \mathbb{F}_{3^{6m}}^{\times}$$

for
$$i \leftarrow 0$$
 to $(m-1)/2$ do

1
$$x_P \leftarrow x_P$$
 ; $y_P \leftarrow y_P$ $x_Q \leftarrow x_Q^{9} \pm 1$; $y_Q \leftarrow -y_Q^{9}$

②
$$t \leftarrow x_P + x_Q$$
; $u \leftarrow y_P y_Q$
 $S \leftarrow -t^2 + u\sigma - t\rho - \rho^2$

- ③ $R \leftarrow R \cdot S$

end for

1
$$x_P \leftarrow \sqrt[3]{x_P}$$
 ; $y_P \leftarrow \sqrt[3]{y_P}$ $x_Q \leftarrow x_Q^3$; $y_Q \leftarrow y_Q^3$

2
$$t \leftarrow x_P + x_Q$$
; $u \leftarrow y_P y_Q$
 $S \leftarrow -t^2 \pm u\sigma - t\rho - \rho^2$

③ $R \leftarrow R \cdot S$

$$\eta_T: E(\mathbb{F}_{3^m})[\ell] \times E(\mathbb{F}_{3^m})[\ell] \to \mathbb{F}_{3^{6_m}}^{\times}$$

for
$$i \leftarrow 0$$
 to $(m-1)/2$ do

$$\begin{array}{cccc}
\text{1} & x_P \leftarrow \sqrt[3]{x_P} & ; & y_P \leftarrow \sqrt[3]{y_P} \\
x_Q \leftarrow x_Q^3 & ; & y_Q \leftarrow y_Q^3
\end{array}$$

②
$$t \leftarrow x_P + x_Q$$
; $u \leftarrow y_P y_Q$
 $S \leftarrow -t^2 \pm u\sigma - t\rho - \rho^2$

③
$$R \leftarrow R \cdot S$$

$$\eta_T: E(\mathbb{F}_{3^m})[\ell] \times E(\mathbb{F}_{3^m})[\ell] \to \mathbb{F}_{3^{6m}}^{\times}$$

for
$$i \leftarrow 0$$
 to $(m-1)/2$ do

①
$$x_P \leftarrow \sqrt[3]{x_P}$$
 ; $y_P \leftarrow \sqrt[3]{y_P}$ 2 inv. Frobenius $x_Q \leftarrow x_Q^3$; $y_Q \leftarrow y_Q^3$ 2 Frobenius (\mathbb{F}_{3^m})

②
$$t \leftarrow x_P + x_Q$$
; $u \leftarrow y_P y_Q$
 $S \leftarrow -t^2 \pm u\sigma - t\rho - \rho^2$

$$⊗$$
 $R \leftarrow R \cdot S$

$$\eta_T: E(\mathbb{F}_{3^m})[\ell] \times E(\mathbb{F}_{3^m})[\ell] \to \mathbb{F}_{3^{6m}}^{\times}$$

for
$$i \leftarrow 0$$
 to $(m-1)/2$ do

①
$$x_P \leftarrow \sqrt[3]{x_P}$$
 ; $y_P \leftarrow \sqrt[3]{y_P}$ 2 inv. Frobenius (\mathbb{F}_{3^m}) $x_Q \leftarrow x_Q^3$; $y_Q \leftarrow y_Q^3$ 2 Frobenius

②
$$\begin{array}{c} t \leftarrow x_P + x_Q \; ; \; u \leftarrow y_P y_Q \\ S \leftarrow -t^2 \pm u\sigma - t\rho - \rho^2 \end{array}$$
 $2 \times , 1 + (\mathbb{F}_{3^m})$

$$2 \times$$
, $1 + (\mathbb{F}_{3^m})$

③
$$R \leftarrow R \cdot S$$

$$\eta_T: E(\mathbb{F}_{3^m})[\ell] \times E(\mathbb{F}_{3^m})[\ell] \to \mathbb{F}_{3^{6_m}}^{\times}$$

for
$$i \leftarrow 0$$
 to $(m-1)/2$ do

①
$$x_P \leftarrow \sqrt[3]{x_P}$$
 ; $y_P \leftarrow \sqrt[3]{y_P}$ 2 inv. Frobenius (\mathbb{F}_{3^m}) $x_Q \leftarrow x_Q^3$; $y_Q \leftarrow y_Q^3$ 2 Frobenius

2 inv. Frobenius
$$(\mathbb{F}_{3^m})$$

②
$$\begin{array}{c} t \leftarrow x_P + x_Q \; ; \; u \leftarrow y_P y_Q \\ S \leftarrow -t^2 \pm u\sigma - t\rho - \rho^2 \end{array}$$
 2 ×, 1+

$$2 \times$$
, $1 + (\mathbb{F}_{3^m})$

③
$$R \leftarrow R \cdot S$$

$$1 \times (\mathbb{F}_{3^{6m}})$$

$$\eta_T: E(\mathbb{F}_{3^m})[\ell] \times E(\mathbb{F}_{3^m})[\ell] \to \mathbb{F}_{3^{6_m}}^{\times}$$

for
$$i \leftarrow 0$$
 to $(m-1)/2$ do

2 inv. Frobenius
$$(\mathbb{F}_{3^m})$$

②
$$\begin{array}{c} t \leftarrow x_P + x_Q \; ; \; u \leftarrow y_P y_Q \\ S \leftarrow -t^2 \pm u\sigma - t\rho - \rho^2 \end{array}$$
 $2 \times , 1 + (\mathbb{F}_{3^m})$

$$2 \times$$
, $1 + (\mathbb{F}_{3^m})$

$$⊗$$
 $R \leftarrow R \cdot S$

$$15 \times$$
, $29 + (\mathbb{F}_{3^m})$

$$\eta_T: E(\mathbb{F}_{3^m})[\ell] \times E(\mathbb{F}_{3^m})[\ell] \to \mathbb{F}_{3^{6m}}^{\times}$$

for
$$i \leftarrow 0$$
 to $(m-1)/2$ do

①
$$x_P \leftarrow \sqrt[3]{x_P}$$
 ; $y_P \leftarrow \sqrt[3]{y_P}$ 2 inv. Frobenius (\mathbb{F}_{3^m}) $x_Q \leftarrow x_Q^3$; $y_Q \leftarrow y_Q^3$ 2 Frobenius

end for

▶ Modified algorithm: $17 \times$, 2 Frobenius, 2 inverse Frobenius and $30 + \text{over } \mathbb{F}_{3^m}$

$$\eta_T: E(\mathbb{F}_{3^m})[\ell] \times E(\mathbb{F}_{3^m})[\ell] \to \mathbb{F}_{3^{6_m}}^{\times}$$

for
$$i \leftarrow 0$$
 to $(m-1)/2$ do

③
$$R \leftarrow R \cdot S$$
 15 ×, 29 + (\mathbb{F}_{3^m})

- ▶ Modified algorithm: $17 \times$, 2 Frobenius, 2 inverse Frobenius and $30 + \text{over } \mathbb{F}_{3^m}$
- \triangleright Previous algorithm: 17 \times , 10 Frobenius and 38 +

$$\eta_T: E(\mathbb{F}_{3^m})[\ell] \times E(\mathbb{F}_{3^m})[\ell] \to \mathbb{F}_{3^{6m}}^{\times}$$

for
$$i \leftarrow 0$$
 to $(m-1)/2$ do

②
$$\begin{array}{c} t \leftarrow x_P + x_Q \; ; \; u \leftarrow y_P y_Q \\ S \leftarrow -t^2 \pm u\sigma - t\rho - \rho^2 \end{array}$$
 $2 \times , 1 + (\mathbb{F}_{3^m})$

③
$$R \leftarrow R \cdot S$$
 15 ×, 29 + (\mathbb{F}_{3^m})

- ▶ Modified algorithm: $17 \times$, 2 Frobenius, 2 inverse Frobenius and $30 + \text{over } \mathbb{F}_{3^m}$
- \blacktriangleright Previous algorithm: 17 \times , 10 Frobenius and 38 +
- Cost of the inverse Frobenius?

$$\eta_T: E(\mathbb{F}_{3^m})[\ell] \times E(\mathbb{F}_{3^m})[\ell] \to \mathbb{F}_{3^{6m}}^{\times}$$

for
$$i \leftarrow 0$$
 to $(m-1)/2$ do

②
$$\begin{array}{c} t \leftarrow x_P + x_Q \; ; \; u \leftarrow y_P y_Q \\ S \leftarrow -t^2 \pm u\sigma - t\rho - \rho^2 \end{array}$$
 $2 \times , 1 + (\mathbb{F}_{3^m})$

③
$$R \leftarrow R \cdot S$$
 15 ×, 29 + (\mathbb{F}_{3^m})

- ▶ Modified algorithm: $17 \times$, 2 Frobenius, 2 inverse Frobenius and $30 + \text{over } \mathbb{F}_{3^m}$
- \triangleright Previous algorithm: 17 \times , 10 Frobenius and 38 +
- Cost of the inverse Frobenius? Same as the Frobenius

▶ Direct dependency ③ → ③ between consecutive iterations

- ▶ Direct dependency ③ → ③ between consecutive iterations
 - avoid the scheduling bottleneck of task 4
 - better overlapping of successive tasks ③

- ▶ Direct dependency ③ → ③ between consecutive iterations
 - avoid the scheduling bottleneck of task 4
 - better overlapping of successive tasks ③
 - hopefully tighter scheduling

► Perfectly tight scheduling: no idle cycle

- ► Perfectly tight scheduling: no idle cycle
- ▶ 17 clock cycles per iteration

- ► Perfectly tight scheduling: no idle cycle
- ▶ 17 clock cycles per iteration \Rightarrow 17(m+1)/2 cycles for the complete η_T pairing

Outline of the talk

- ► Previously in the Jean-Luc Beuchat Tour
- ► A closer look at the algorithm
- ightharpoonup Accelerating the η_T pairing
- ► Accelerating the final exponentiation
- ► Implementation results
- ► Concluding thoughts

Outline of the talk

- ► Previously in the Jean-Luc Beuchat Tour
- ► A closer look at the algorithm
- ightharpoonup Accelerating the η_T pairing
- ► Accelerating the final exponentiation (in characteristic 3)
- ► Implementation results
- ► Concluding thoughts

▶ Compute $\hat{e}(P,Q)$ as $\eta_T(P,Q)^M$ with $\eta_T(P,Q) \in \mathbb{F}_{3^{6m}}^{\times}$ and

$$M = (3^{3m} - 1)(3^m + 1)(3^m + 1 \mp 3^{(m+1)/2})$$

▶ Compute $\hat{e}(P,Q)$ as $\eta_T(P,Q)^M$ with $\eta_T(P,Q) \in \mathbb{F}_{3^{6m}}^{\times}$ and

$$M = (3^{3m} - 1)(3^m + 1)(3^m + 1 \mp 3^{(m+1)/2})$$

▶ Operations over \mathbb{F}_{3^m} : 73 ×, 3m + 3 Frobenius, 3m + 175 +, and 1 inversion

▶ Compute $\hat{e}(P,Q)$ as $\eta_T(P,Q)^M$ with $\eta_T(P,Q) \in \mathbb{F}_{3^{6m}}^{\times}$ and

$$M = (3^{3m} - 1)(3^m + 1)(3^m + 1 \mp 3^{(m+1)/2})$$

▶ Operations over \mathbb{F}_{3^m} : $73 \times$, 3m + 3 Frobenius, 3m + 175 +, and 1 inversion ($\sim \log m \times$ and m - 1 Frobenius)

▶ Compute $\hat{e}(P,Q)$ as $\eta_T(P,Q)^M$ with $\eta_T(P,Q) \in \mathbb{F}_{3^{6m}}^{\times}$ and

$$M = (3^{3m} - 1)(3^m + 1)(3^m + 1 \mp 3^{(m+1)/2})$$

- ▶ Operations over \mathbb{F}_{3^m} : $73 \times$, 3m + 3 Frobenius, 3m + 175 +, and 1 inversion $(\sim \log m \times \text{ and } m 1 \text{ Frobenius})$
- ▶ Cost of the η_T pairing:
 - (m+1)/2 iterations
 - 17 \times , 10 Frobenius and 38 + over \mathbb{F}_{3^m} per iteration

▶ Compute $\hat{e}(P,Q)$ as $\eta_T(P,Q)^M$ with $\eta_T(P,Q) \in \mathbb{F}_{3^{6m}}^{\times}$ and

$$M = (3^{3m} - 1)(3^m + 1)(3^m + 1 \mp 3^{(m+1)/2})$$

- ▶ Operations over \mathbb{F}_{3^m} : $73 \times$, 3m + 3 Frobenius, 3m + 175 +, and 1 inversion ($\sim \log m \times$ and m 1 Frobenius)
- ▶ Cost of the η_T pairing:
 - (m+1)/2 iterations
 - 17 \times , 10 Frobenius and 38 + over \mathbb{F}_{3^m} per iteration
- ▶ The final exponentiation is much cheaper than the η_T pairing
- Challenge for the final exponentiation:
 - computation in the same time as the η_T pairing
 - using as few resources as possible

- ► First idea: use the unified operator
 - the smallest architecture supporting all the required operations over \mathbb{F}_{3^m}
 - purely sequential scheduling

- ► First idea: use the unified operator
 - the smallest architecture supporting all the required operations over \mathbb{F}_{3^m}
 - purely sequential scheduling
- \blacktriangleright Example for m = 97:
 - computation in 1430 clock cycles

- ► First idea: use the unified operator
 - the smallest architecture supporting all the required operations over \mathbb{F}_{3^m}
 - purely sequential scheduling
- \triangleright Example for m = 97:
 - computation in 1430 clock cycles
 - ... but 833 clock cycles for the η_T pairing

- ► First idea: use the unified operator
 - the smallest architecture supporting all the required operations over \mathbb{F}_{3^m}
 - purely sequential scheduling
- \triangleright Example for m = 97:
 - computation in 1430 clock cycles
 - ... but 833 clock cycles for the η_T pairing
- Some parallelism is required

- ► First idea: use the unified operator
 - the smallest architecture supporting all the required operations over \mathbb{F}_{3^m}
 - purely sequential scheduling
- \triangleright Example for m = 97:
 - computation in 1430 clock cycles
 - ... but 833 clock cycles for the η_T pairing
- Some parallelism is required
- ▶ New coprocessor with two arithmetic units:
 - a standalone multiplier, based on a parallel-serial scheme
 - a unified operator supporting addition/subtraction, Frobenius map and double Frobenius map

Outline of the talk

- ► Previously in the Jean-Luc Beuchat Tour
- ► A closer look at the algorithm
- ightharpoonup Accelerating the η_T pairing
- ► Accelerating the final exponentiation
- ► Implementation results
- ► Concluding thoughts

Experimental setup

- ► Full coprocessor for computation of the Tate pairing
- ► Architecture based on the two parallel accelerators
- Prototyped on a Xilinx Virtex-II Pro 50 FPGA (larger model)
- ▶ Post place-and-route results: area, computation time, AT product

Coprocessor area

Coprocessor area

Calculation time

Calculation time

Area-time product

Area-time product

Area-time product

Outline of the talk

- ► Previously in the Jean-Luc Beuchat Tour
- ► A closer look at the algorithm
- ightharpoonup Accelerating the η_T pairing
- ► Accelerating the final exponentiation
- ► Implementation results
- ► Concluding thoughts

Conclusion and perspectives

► The fastest implementation of the literature!

Conclusion and perspectives

- ► The fastest implementation of the literature!
- ▶ Importance of the adequation between algorithm and architecture

Conclusion and perspectives

- ► The fastest implementation of the literature!
- ▶ Importance of the adequation between algorithm and architecture
- ► Scalability? **AES-128?**

With thanks to our sponsor

Thank you for your attention

Questions?